Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 249: 108146, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593514

RESUMEN

BACKGROUND AND OBJECTIVE: In the current work, we present a descriptive fluid-structure interaction computational study of the end-to-side radio-cephalic arteriovenous fistula. This allows us to account for the different thicknesses and elastic properties of the radial artery and cephalic vein. METHODS: The core of the work consists in simulating different arteriovenous fistula configurations obtained by virtually varying the anastomosis angle, i.e. the angle between the end of the cephalic vein and the side of the radial artery. Since the aim of the work is to understand the blood dynamics in the very first days after the surgical intervention, the radial artery is considered stiffer and thicker than the cephalic vein. RESULTS: Our results demonstrate that both the diameter of the cephalic vein and the anastomosis angle play a crucial role to obtain a blood dynamics without re-circulation regions that could prevent fistula failure. CONCLUSIONS: When an anastomosis angle close to the perpendicular direction with respect to the radial artery is combined with a large diameter of the cephalic vein, the recirculation regions and the low Wall Shear Stress (WSS) zones are reduced. Conversely, from a structural point of view, a low anastomosis angle with a large diameter of the cephalic vein reduces the mechanical stress acting on the vessel walls.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Humanos , Derivación Arteriovenosa Quirúrgica/métodos , Velocidad del Flujo Sanguíneo , Arteria Radial , Diálisis Renal , Resultado del Tratamiento
2.
Vietnam J Math ; 51(1): 127-149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36536831

RESUMEN

In this work we study the blood dynamics in the pulmonary arteries by means of a 3D-0D geometric multiscale approach, where a detailed 3D model for the pulmonary arteries is coupled with a lumped parameters (0D) model of the cardiovascular system. We propose to investigate three strategies for the numerical solution of the 3D-0D coupled problem: the Splitting-Explicit and Implicit algorithms, where information are exchanged between 3D and 0D models at each time step at the interfaces, and the One-Way algorithm, where the 0D is solved first off-line. In our numerical experiments performed in a realistic patient-specific 3D domain with a physiologically calibrated 0D model, we discuss first the issue on instabilities that may arise when not suitable connections are considered between 3D and 0D models; second we compare the performance and accuracy of the three proposed numerical strategies. Finally, we report a comparison between a healthy and a hypertensive case, providing a preliminary result highlighting how our method could be used in future for clinical purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...